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WAVE FORMATION IN LIQUID FILM FLOW ON A VERTICAL WALL 

S. V. Alekseenko, V. E. Nakoryakov, 
and B. G. Pokusaev 

UDC 532.62 

Theoretical and experimental investigations show that laminar vertical liquid film flow 
is unstable starting with the lowest Reynolds numbers Re. The instability results in the 
origination of periodic waves, which grow rapidly in amplitude with distance and emerge into 
the stationary mode for specific amplitudes. Linear stability of a smooth film was investi- 
gated in many papers [1-5]. The greatest successes have been achieved on the basis of 
numerical methods of calculating the Orr-Sommerfeld equation. Dependences have been obtained 
for the wave amplitude increment, for the phase velocity and wave number of neutral perturba- 
tions and maximum growth waves as a result of the computations. 

Clarity in the nonlinear wave formation mechanism at high Reynolds numbers is substan- 
tially lower. Research on nonlinear waves can be divided into two provisional groups in 
which the cases of low and high numbers Re are exemined, respectively. For the case Re ~ 1 
(here Re = qo/9, qo is the specific mass flow rate, and 9 is the kinematic viscosity), a non- 
linear nonstationary equation is derived for long waves on the film surface by using the 
method of narrow bands [6-8]. For the moderate number range Re ~ 5-50, only a stationary 
equation is derived [9-11], and nonlinear nonstationary waves are analyzed on the basis of a 
system of equatibns of boundary layer type by using the integral relations method. 

There is a definite objective need to derive a universal model equation for nonstatlon- 
ary nonlinear waves which would permit extension of existing approaches and which would be 
valid in a broad range of numbers Re. An attempt to derive such an equation is presented in 
this paper. Results of a linear analysis of this equation are compared with experimental 
results for growing linear waves and with results of other authors. 

i. DERIVATION OF THE EQUATION FOR THE WAVES 

Let us write the Navier--Stokes equations and the boundary conditions for a fluid film 
flowing on a vertical wall (Fig. I) in the dimensionless form 

au* au* " v* au* 3 i [ a~u * a~u * '~ ap*.  
Or* + u *  ~---~- + ay* = Re'---7 + ea---?~ ~-~ ~ + %~'~-] - -  0-~ 7 '  ( 1 . 1 )  

Z / O r *  + Or* + Or* \  3 [ O~'v * 02v * \ 
e~ _ _  Op* . 

Ou* Ov* 
ax--; -5 -- = O; oy* (1.3) 

8~ 40h*/Ox* Ov* Ou* Or* 
t - -  e ~ (Oh*/Ox*) z Oy* -5 ~ -5 e~ ~ = 0 for y = h; 

31/SFil/ae ~ O~h*/Ox .2  2e o v * F t + e 2 ( O h * l O z * ) ~ l  (1.4) 
Ap* = - -  Re~/3 [1 + e 2 (0h*/0z*)~] ~/~ -5 tie @* [ ] ' ~ - - ? ~  

for y = h; 

u* -0, v * = O  for y = O ;  
(1.6) 
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Fig. i 

V * -  Oh* 'U* ah* at* + ~ ~r  y = h ,  ( 1 . 7 )  

where U* is the dimensionless longitudinal velocity component on the film surface. Conditions 
(1.4) and (1.5) indicate the absence of tangential and normal stresses on the film surface, 
while condition (1.7) is the usual kinematic condition on a free surface. The following di- 
mensionless quantities have been introduced here 

u * - -  U/Uo, v* - -  (Wuo)L/ho, x*  - -  x / L ,  y*  = y/ho, 

t* = tuo /L  , p*  - -  p / (pu~) ,  e - -  ho /L ,  

Fi = o'/(pSgv ~) is the film number, where t is the time, L is the characteristic longitudinal 
dimension (wavelength, for instance), p is the pressure, g is the free-fall acceleration, p 
is the density, a is the fluid surface tension, and ho and uo are determined from the Nusselt 
formulas for smooth laminar film flow Re = qo/v = gh~/(3v a) = houo/v. 

Let us examine the longwave process s << 1 and setting Re ~ I/~ we keep terms of order 
1 in (1.1)-(1.7). We consequently arrive at equations of the boundary layer type, which we 
write in dimensional form 

with the boundary conditions 

Ou au au O~u t Op 
a'-T + u-~-f + v  ~ - - = v  aY ~ p a~ + g ;  (1 .8)  

ap _ O; (1.9) Oy 

Ou Or, 
07 + T~ = o (1 .1o)  

a--~u--0 ~r y--h; (i.ii) #y 
ap _ #3h 
az ~ ~r  y =h. (1.12) Ox s 

Conditions (1.6) and (1.7) remain unchanged. Using (1.9) and (1.12), we rewrite (1.8) in the 
form 

au Ou Ou O~u o ~ah (i. 13) 
a--C + u ~-f~ + v-~y - v 7 + g + .--~- 07"  

It was taken into account in t h e  derivation of (1.13) that Fi */" is a large quantity for real 
fluids (for instance, Fi */3 = i0 ~ for water). 

It is important to note that the approximate equations (i.ii) and (1.13) retain their 
form in a very much greater range of Re numbers than Re ~ i/~. For Re ~ i/~ all the terms of 
(1.13) are of the same order, for Re ~ 1 the inertial terms in (1.13) are less than all the 
remaining terms, while for Re ~ I/E 2 they are correspondingly greater. However, it is seen 
that the order of the discarded terms in the initial system is always less in the number 
range Re = i -- I/~ a than is the order of the terms retained in (1.13) and (I.Ii), i.e., the 
number Re can actually vary between one and numbers corresponding to the transition to the 
turbulent mode in the approximation mentioned. 
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We henceforth use the integral relations method (the Karman--Pohlhausen method). The 
main difficulty in this method is that the instantaneous velocity profile in the film must 
be given by an a priori method. It is difficult to estimate the error occurring here al- 
though it is intuitively clear that it should not be ioo large in the long wave case. The 
results of experiments [12-13] on the direct determination of the instantaneous velocity pro- 
files in a fluid wave film indicate a satisfactory approximation of the velocity profile by 
a self-slmilar polynomial in the case of two-dimenslonal waves of, at least, moderate ampli- 
tude. 

(1.13) and (i. I0) over the film thickness, we obtain after simple manipu- By integrating 
lations 

h h 
Ou 

O ~ u ~ d y  - -  (-~-y)u=o + gh -+ - - -  
0 0 

h 

Oh a 
a-T + T x  udy  = O. 

0 

oh ash. 
p OX 3 ' (1.14) 

(1.15) 

Let us represent the velocity profile as 

u = U / ( n ) ,  n = y/h. 
The function f can be approximated by a second degree polynomial, say, with coefficients 
satisfying the boundary conditions (1.6) and (l.ll) 

[(n)=2~_ns. (1.16) 
Furthermore, we introduce the instantaneous fluid mass flow rate in the film and express it 
in terms of f 

Analogously, we have 

h 1 

g = J" = 
0 0 

h 1 

-~-~- n=o" 
o o 

Using these expressions and introducing the notation 

I I 

d/ ,! Idol = 6, ,! [~d~l = ? ,  - ~ k = o  = ~ '  % = ?/62'  
0 0 

we rewrite (1.14) and (1.15) in the form of equations for the thickness and the mass flow 
rate 

Oq 2X + Oq . q~ Oh }r . 6h 03h. 
o-T + -~x - -  )~ ~ "  -~z = ~-~ q + gh -i- --~ ~za, (1.17) 

Oh Oq 
o-/ + ~ = 0. (1.18) 

Let us represent the total flow in the form q = qo + q', h = ho + h', where the prime 
denotes the perturbed part of the quantity, and let us substitute these expressions in (1.17) 
and (1.18). Setting q' << qo, h' << ho, and keeping terms on the order of h 'a, q,2 in the 
equations, we obtain nonlinear equations for the thickness and mass flow rate perturbations 
with nonlinear terms in the right side 

Oq" 2xqo Oq" q~ Oh" z"~ , --7 + -3gh' 

2 h ' ~  2 X [ Oq" q'aq" 
- - -  _ " ~ x  qO Ox h o at h~ qo h '  -F ho 

Oh" . Oq" 
-g-/- H- ~-x = o. 

oh o Oah" 3gh '2 
P Ox s 

_ r  Oh'l. 
Ox J' 

h o ( 1 . 1 9 )  

(1.2o) 
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Let us differentiate (1.19) with respect to x and let us replace the derivative ~q'/~x in 
the linear terms by means of the continuity equation (1.20), then 

O ~ ' { _  2Xqo o~h" q~ O~h" . ~v Oh" Oh" oho O4h" 
O, ho OxOt + X K~ ~-z~ "-l- Sh~ "~ -5 3g ~z --: P Oz" 

(1.21) 
-- 6ght~ o -~z -~ j '~z \ "~  (b/Oq'] -~]-5-~o -~z 2;~qa 0 [ h r ~ - 5 ~ o  ~ i o q "  ho jO  q'.~z -~tJOh'~]" 

In  o r d e r  t o  e l i m i n a t e  q '  and ~ q ' / ~ t  f rom t h e  n o n l i n e a r  t e r m s ,  we u se  t h e  f o l l o w i n g  con -  
s i d e r a t i o n s .  We go f rom t h e  v a r i a b l e s  x ,  t i n  t h e  c o n t i n u i t y  e q u a t i o n  t o  t h e  v a r i a b l e s  g, t ,  
where g = x -- c~, c is the propagation velocity of the perturbations which we shall consider 
constant for the quasistationary wave case. As follows from experiment, in many cases the 
waves under consideration can actually be considered as weakly dispersive and weakly non- 
linear. We then have 

Oh'/Ot -- cOh'/O~ -5 0~'/0~ = 0. (i. 22) 

In the case of a quasistationary process, the wave profile in the moving coordinate system 
is deformed slightly whereupon we arrive at the approximate equation c~h'/~ = ~q'/~ from 
(1.22), from which the relationships 

q' = ch'; 
O/Ot = --cO/Ox~ 

(1 .23 )  

( 1 . 24 )  

follow. For stationary waves (i. 23)- (i. 24) are exact. 

Now, let us substitute (1.23) into the nonlinear terms in (1.21), which are always of 
higher order for Re ffi 1- I/g a than the main terms. We replace derivatives of the form c~/~x 
appearing here in the nonlinear terms according to (1.24). We thus obtain a nonlinear non- 
stationary equation for the thickness perturbation 

ox/ +_V_~_k~+c * 0 a 

q_6 ahog h, oa" 26 ( Z _ l )  ho O (h, ah'~ 8_.~ h" a,jf ( 1 . 25 )  
~ o~ ~" -V J~'~ J [ / +  ~pv o ~ - 0, 

where co = 3qo/ho, ct = qo(x + X ~ -  x)/ho, ca = qo(x -- X/~-- x)/ho. 

Equation (1.25) has the characteristic two-wave structure. This means that the wave 
process on the fluid film includes a kinematic wave, as a lower order wave with the velocity 
Co, and waves described by higher order derivatives and being propagated with the velocities 
ct and ca. The method of deriving and analyzing such equations is discussed in detail in 
[14]. 

For the subsequent discussions, let us use the approximation (1.16) for the velocity 
profile in a gravitationally flowing vertical fluid film, and let us evaluate the coefficients 

6 = 2 / 3 ,  ~ = 2 ,  X = l . 2 ,  c 1 = i . 6 9 u o ,  

c~ = 0.7iuo, uo = qo/ho = gh~/(3v). 

Substituting these values into (1.25) and nondimensionalizing, we finally have 

0 0H 

(1.26) / h ~ \3 O4H 

where H = h'/ho. It is always possible to arrive at the standard manner with one scale ho, 
from the form of writing (1.26), by assuming L = ho. 

If it is assumed that the wave is stationary, h' = h'(x -- at), then (1.26) will corre- 
spond to the equations in [i0, ll]. 

Let us consider the case ho/L <<i, Re ~ i. We see that underlying the wave process is 
the kinematic wave ~H/~t* + 3~H/~x* = 0. Following [14], we replace the derivative with 
respect to the time in the higher order wave by using the relationship ~/~t* = --3~/~x*, we 
neglect the second term, and we go from (1.26) to the equation 
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An equation of the type (1.27) was recently used in [7, 8, 15, 16] as the main equation in an 
analysis of nonlinear waves on a film. 

Let us consider the other limit case when Re(ho/L) >> 1. Underlying the wave process 
will be a second-order wave. Let us first extract the wave ~H/3t* + 1.69~H/~x* = 0 being 
propagated along the stream. In all the remaining derivatives we substitute 8/~t* = --1.69~/ 
~x* and we obtain 

b ~ §  t ' 69T~*-52"07HT= * Re ~ - - R ~  ~'o " Re k--if/ O-'~ = 0 "  (1 .28 )  

An equation of such form was obtained in [17] as a model equation for waves on a film surface 
for large Re. 

Therefore, in the case of the longwave process at low Reynolds numbers, the energy from 
the meanflow is pumped into the kinematic wave by means of a high-order wave mechanism. This 
corresponds to the appearance of a pumping term with a second derivative in (1.27), or as is 
sometimes said, a termwith "negative" viscosity. For high Reynolds numbers, =he energy in a 
high-order wave, which can provisionally be called "inertial," is pumped by a kinematic wave, 
which corresponds to =he appearance of a llnear "low-frequency" pumping term in (1.28). 

A conclusion on the exact domain of applicability of (1.26) and on the possibility of a 
passage to the limit in (1.26) to the case of high numbers Re can be made only on the basis 
of comparing the solutions of this equation with experiment and exact numerical solutions. 
Such a comparison is made below for linear waves. 

2. STABILITY ANALYSIS OF FILM FLOW 

Let us derive a dispersion equation for temporarily growing (damping) waves from (1.26). 
To this end, we represent H in the form H = Ao exp [i(kx* -- ~t*)c -l] = Ao exp [ik~-*(x* - 
c,t*) ] exp St*~ -~, where k = 2~he/% is the real wave number, ~ = ~ + iB is the complex fre- 
quency made dimensionless in terms of ho and uo, c* = c/uo is the real part of the phase 
velocity. We substitute H in the linearized equation (1.26) and separating real and imaginary 
parts, we obtain 

2 (2.1) - - c * - 5  3 - - 7  c*~Re-5  0 .8Re~  = 0; 

313 - -  k 2 Re (c *~ - -  2.4c* -5 t.2) -5 13 ~ Re -5 3 We k ~ ---- 0. ( 2 . 2 )  

Analogous equations were derived earlier in [3] directly from the inltial system of equations 
(1.14)-(1.15), but the dispersion relations were not analyzed. 

There follows from (2.1) 

3 c*--3 (2 .3 )  
~ R e =  2 c* --= 1.2" 
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Eliminating B from (2.2) by using (2.3), we derive the quadratic equation in k=Re = whose solu- 
tion is 

(kRe)= Re" * * [ ( ], (2.4) = ~ w ;  (c* - c O ( c *  ca) I ~- I + 27 we  r - 8xc* + o.6) 

where c* = 1.69 and c'2 = 0.71. 

Neutral waves exist under the conditions 

= 0, c* = 3, k = V B e - ~ .  (2.5) 
Waves  w i t h  c *  > 3 damp o u t  e x p o n e n t i a l l y ,  and  w i t h  c* < 3 g r o w .  

An analysis of (2.3) shows that the maximum of the increment in B corresponds to the 
minimumphase velocity on the dispersion curve (2.4). For an exact determination of the 
maximum-growth wave characteristics, we turn to (2.2) and (2.3). We rewrite (2.3) as 

c* = t.2 + t.8/(I), (2.6) 
where ~ = l § 2B Re/3 --> l. We then substitute (2.6) into (2.2), we differentiate the expres- 
sion obtained with respect to k and taking account of the extremum condition ~/~k = 0, we 
obtain 

]//' -~-~@ _/ la.5 ~//  a l i@t~=_l).  (2.7) 
kBe = 02 ~;~/-~ -- I = T~'-- 

Finally, substituting (2.6), (2.7) into (2.2), we arrive at: the expression 

__lle3 = r (r _ I). a. io 8 ( 2 . 8 )  
We (r _ t3.5) z 6.4 " 

The increment of the maximum-growth wave is 

= i,5(q) -- t)/Re. (2.9) 
I n  o r d e r  t o  go f r o m  t h e  t i m e  i n c r e m e n t s  B t o  t h e  s p a c e  i n c r e m e n t s  ( - a ) ,  w h i c h  a r e  i n d e e d  

m e a s u r e d  i n  e x p e r i m e n t ,  t h e  known G a s t e r  t r a n s f o r m a t i o n  m u s t  b e  u s e d  

i[ o=.]=,,:.. 
I t  i s  here  taken i n t o  account t h a t  ~c* /3k  = 0 f o r  the maximum-growth waves, As a numer i ca l  
computat ion has shown, w i t h i n  the framework of  the problem fo i~au la ted ,  the s p a t i a l  and t ime 
increments actually are related sufficiently accurately by (2.10). 

Therefore, the group of formulas (2.6)-(2.10) describes all the characteristics of waves 
growing maxlmally in a film. Since the numbers Re and We are in the formulas in the combina- 
tions ReS/We~ it is convenient to convert it: so that only one rated parameter Re would be used 

ReS/We = 32/S(Re/ (Fi l lu )111  s. 
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3. EXPERIMENTAL TECHNIQUE 

Experiments to investigate waves in their domain of origin were performed on the appara- 
tus of [12, 13]. Fluid went from a constant level tank to the outer surface of the working 
section where it flowed in the form of a film, through a system of rot�9 An organic 
glass tube of 60-mm outer diameter and l-m length was used as working section. The fluid 
was delivered to the working section through an annular slot of a distributor whose length 
was 70 mm and its width was 0.5-1 mm. 

The main difficulty in preparing the experiment was in organizing the two-dimensional 
flow of the fluid wave film. In order to obtain uniform trickling, the working sections were 
mounted strictly vertically, and the magnitude of the annular gap and the coaxiality of the 
distributor with the working section was regulated precisely until the waves originating be- 
come two-dimensional (annular). The possibility of such regulation was achieved because of 
the slight play between the fitted surfaces of theworking section and the distributor. 

The fluid film is extremely responsive to external perturbations, in particular to vibra- 
tions from the working pump. Hence, the tests were performed only with the pump disconnected, 
and the fluid was pumped in the Constant head tank periodically in an automatic mode. 

Water--Elycerine and water--alcohol solutions which possess the advantage that they are 
very much less subject to the influence of pollutants being adsorbed on the film surface as 

. compared to pure water were used as working fluids. 

The instantaneous andmean thicknessof thefilm , and the amplitude, velocity, and length 
of the waves were measured during the experiments. The film thickness was measured by a 
shadow method which consisted of photographing the shadow cast by the fluid film upon illumin- 
ation of the working section [12]. The wave phase velocity was determined by the phase shift 
between two simultaneous inscriptions of the instantaneous film thickness, which corresponded 
to two different points along the tube. The accuracy of measuring the absolute thickness was 
estimated as 2-5%, and the phase velocity as 5-9%. 

4. TWO-DIMENSIONAL WAVES IN THE DOMAIN OF THEIR ORIGIN 

The fluid film flow pattern along the vertical surface for the numbers Re = 5-50 has the 
following form. The fluid film is smooth directly at the exit slot. Then at a certain dis- 
tance from the edge of the slot, infinteslmal two-dimensional periodic perturbations originate 
because of the natural instability of the smooth laminar flow, and grow in amplitude quite 
rapidly. Upon reaching sufficiently high amplitudes the nonlinearity starts to influence, 
and the waves emerge in the nonlinear stationary mode. Two-dimensional waves are themselves 
unstable and rapidly develop into three-dimensional horseshoe-shaped perturbations which are 
naturally nonscationary. 

Results on the evolution of two-dimensional waves in the domain of their origin are 
presented in Figs. 2 and 3. Oscillograms of the film thickness were taken at different dis' 
tances from the exit slot edges by advancing the optical system along the working section. 
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It follows from Fig. 2 that the originating waves are sinusoids and, as has been shown earlier, 
their amplitude grows exponentially with distance. And only upon reaching sufficlently high 
amplitudes (at the distance x/ho ~ 200, Fig. 2) is the wave shape distorted and the growth 
rate retarded abruptly. Data on the velocity and wavelength of growing waves are represented 
for convenience in the form of dependences on the amplitude (Fig. 3), from which the llnearity 
of the waves in the domain of their origin follows directly. The amplitude u in Fig. 3 is 
defined as the difference between the maximum and minimum values of the thickness. 

It must be noted that the originatingwaves are not generally strictly regular, and 
hence, statistical processing of the signal is required to obtain the average wave character- 
istics. However, comparatively regular two-dlmensional waves can be observed in the wave 
formation domain for a well-organized fluid delivery to the working section and suitable 
fluid properties (glycerine and alcohol solutions) and mass flow rates. Namely such wave 
modes were indeed processed in this experiment where possible. 

According to linear instability theories, the waves observed in practice near the wave 
formation line should correspond to maximum-growth waves, as is partially confirmed in [18, 
19] for the velocity and wavelength. Data on the increment, velocity, andlength of the 
growing waves are presented in Figs. 4-6, and are compared with theoretical dependences for 
maximum growth waves and the experimental data of other authors. In constructing the graphs, 
coordinates were selected in which the theoretical dependences obtained in this paper are 
universal curves. 

In the range of numbers Re > I0 our experlmental data 1 in Fig. 4 for the water-glycer- 
ine solution (v ffi 2.34.10-" m2/sec, c/p = 60.2.10-' m3/sec 2, Fi */~x ffi 6.4)agree with the 
data 2 [20]. For the number Re ~ i the experimental data 3, 4 from [4] are superposed for an 
oil film. 

For values of the complex Re/Fi */I* < 0.5 the experimental points are described well by 
different theories: I is a computation using (2.6)-(2.10), IIl is from [i], IV is the long- 
wave approximation in [i], and VI is from [5]. In the moderate Re number range, test data 
are generalized for Re/Fil/11>2 bythe theoreticaldependences I,VI and partially bya 
computation II in [2]. For Re/Fi */** > 50 the dependence I agrees with the computation V in 
[17]. 

Our data on the velocity and wave number of growing waves are presented in Figs. 5 and 
6 for glycerine and alcohol solutions: i) v = 2.12,10-' m/sec, c/p = 65.3,10-' m'/sec=; 2) 
2.12,10-" and 28.5,10-'; 3) 3.72,10-' and 61,i0-'; 4) 2.34,10-" and 60.2,10-'. The numbers 
5, 6 denote the data of [18, 19] for growing waves on a vertical water film, respectively, 
while 7, 8 are data [4] for waves growing maximally on oil films for Re ~ i. The experimental 
points in Fig. 5 have a considerable spread, which is due to the difficulty in measuring the 
wave characteristics of low-amplitude, very shallow waves. Nevertheless, reasonable agree- 
ment is observed between experiment and linear theories of maximal growth waves. Besides 
the dependences I constructed by formulas (2.6)-(2.8), the following theoretical dependences 
are presented in Figs. 5 and 6 for maxlmum-growth waves, obtained numberically: II from [2] 
for water; VI from [5] for wa~er; VII, VIII from [4] for oil (Fi*/** = 1.72) and water 
(Fi~/11 =9.2), respectively. Curves I and VIII arepractically coincident, although calculated 
on the basis of different equations. Here the neutral curves IX from (2.5) and X from [21] 
are presented. 

Therefore, it follows from Figs. 2-6 that the behavior of growing waves in the wave for- 
mation domain is described at the initial stage of their evolution by linear theories of 
maximum-growth waves. 

The dependences I in Figs. 4-6 generalize the experimental points sufficiently well de- 
spite the simplicity of the equations used to derive them, and agree with other theories in a 
broad range of variation of the complex Re/Fi I/*~, which is one of the proofs of the uni- 
versality of the two-wave equation (1.26). 

Assuming the results of the numerical computation of the Orr--Sommerfeld equation in [5] 
to be valid in the whole range of Re numbers presented, a more exact derivation of the 
boundaries of applicability of the boundary-layer approximation for a wave fluid film can 
be made from a comparison of the dependences I and VI, say, in Fig. 4. As is seen from Fig. 
4, the best agreement between the dependences I and Vl is observed in the range of values of 
the complex Re/Fi */** = i-i0. However, even for Re/Fi */** < 1 the agreement between the 
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�9 theories can be considered satisfactory since the dependences differ only by a numerical 
factor, but have identical asymptotics. Am ore substantial discrepancy is observed for Re/ 
Fi*/** > i0 since the theoretical dependences have different asymptotics in the number Re. 
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